with Liam Magee and Tsvetelina Hristova
Big Data & Society 6(1), 2019
Personal data is highly vulnerable to security exploits, spurring moves to lock it down through encryption, to cryptographically ‘cloud’ it. But personal data is also highly valuable to corporations and states, triggering moves to unlock its insights by relocating it in the cloud. We characterise this twinned condition as ‘clouded data’. Clouded data constructs a political and technological notion of privacy that operates through the intersection of corporate power, computational resources and the ability to obfuscate, gain insights from and valorise a dependency between public and private. First, we survey prominent clouded data approaches (blockchain, multiparty computation, differential privacy, and homomorphic encryption), suggesting their particular affordances produce distinctive versions of privacy. Next, we perform two notional code-based experiments using synthetic datasets. In the field of health, we submit a patient’s blood pressure to a notional cloud-based diagnostics service; in education, we construct a student survey that enables aggregate reporting without individual identification. We argue that these technical affordances legitimate new political claims to capture and commodify personal data. The final section broadens the discussion to consider the political force of clouded data and its reconstitution of traditional notions such as the public and the private.